Chapter 7 Web scraping
7.1 Why it matters
Collecting data off websites can be a nightmare. The worst case is manually typing data from a web-page into spreadsheets… but there are many steps we can do before resorting to that.
This chapter will outline the process for pulling data off the web, and particularly for understanding the exact web-page element we want to extract.
The notes and code loosely follow the fabulous data tutorial by Grant R. McDermott in his Data Science for Economists series. It has been updated to scrape the most recent version and structure of the relevant Wikipedia pages.
First up, let’s load some packages.
# Install development version of rvest if necessary
if (numeric_version(packageVersion("rvest")) < numeric_version('0.99.0')) {
remotes::install_github('tidyverse/rvest')
}
# Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, rvest, lubridate, janitor, data.table, hrbrthemes)
library(ggplot2)
library(dplyr)
library(tidyverse)
7.2 Anatomy of a webpage
Web pages can be categorized as either server-side rendered (where content is embedded in the HTML) or client-side rendered (where content loads dynamically using JavaScript). When scraping server-side rendered pages, locating the correct CSS or XPath selectors is crucial.
Trawling through CSS code on a webpage is a bit of a nightmare - so we’ll use a chrome extension called SelectGadget to help.
The R package that’s going to do the heavy lifting is called rvest
and is based on the python package called Beauty Soup.
7.3 Scraping a table
Let’s use this wikipedia page as a starting example. It contains various entries for the men’s 100m running record.
We can start by pulling all the data from the webpage.
m100 <- rvest:: read_html(
"http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression")
m100
## {html_document}
## <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr">
## [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
## [2] <body class="skin--responsive skin-vector skin-vector-search-vue mediawik ...
…and we get a whole heap of mumbo jumbo.
To get the table of ‘Unofficial progression before the IAAF’ we’re going to have to be more specific.
Using the SelectGadget tool we can click around and identify that that specific table.
pre_iaaf =
m100 %>%
html_element("div+ .wikitable :nth-child(1)") %>% ## select table element
html_table() ## convert to data frame
pre_iaaf
## # A tibble: 21 × 5
## Time Athlete Nationality `Location of races` Date
## <dbl> <chr> <chr> <chr> <chr>
## 1 10.8 Luther Cary United States Paris, France July 4, 1…
## 2 10.8 Cecil Lee United Kingdom Brussels, Belgium September…
## 3 10.8 Étienne De Ré Belgium Brussels, Belgium August 4,…
## 4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germany April 13,…
## 5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlands August 28…
## 6 10.8 Harald Anderson-Arbin Sweden Helsingborg, Sweden August 9,…
## 7 10.8 Isaac Westergren Sweden Gävle, Sweden September…
## 8 10.8 Isaac Westergren Sweden Gävle, Sweden September…
## 9 10.8 Frank Jarvis United States Paris, France July 14, …
## 10 10.8 Walter Tewksbury United States Paris, France July 14, …
## # ℹ 11 more rows
Niiiiice - now that’s better. Let’s do some quick data cleaning.
## # A tibble: 21 × 5
## time athlete nationality location_of_races date
## <dbl> <chr> <chr> <chr> <date>
## 1 10.8 Luther Cary United States Paris, France 1891-07-04
## 2 10.8 Cecil Lee United Kingdom Brussels, Belgium 1892-09-25
## 3 10.8 Étienne De Ré Belgium Brussels, Belgium 1893-08-04
## 4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germany 1895-04-13
## 5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlands 1895-08-28
## 6 10.8 Harald Anderson-Arbin Sweden Helsingborg, Sweden 1896-08-09
## 7 10.8 Isaac Westergren Sweden Gävle, Sweden 1898-09-11
## 8 10.8 Isaac Westergren Sweden Gävle, Sweden 1899-09-10
## 9 10.8 Frank Jarvis United States Paris, France 1900-07-14
## 10 10.8 Walter Tewksbury United States Paris, France 1900-07-14
## # ℹ 11 more rows
Let’s also scrape the data for the more recent running records. That’s the tables named ‘Records (1912-1976)’ and ‘Records since 1977’.
For the second table:
iaaf_76 = m100 %>%
html_element("#mw-content-text > div > table:nth-child(17)") %>%
html_table()
iaaf_76 <-iaaf_76 %>%
clean_names() %>%
mutate(date = mdy(date))
iaaf_76
## # A tibble: 54 × 8
## time wind auto athlete nationality location_of_race date ref
## <dbl> <chr> <dbl> <chr> <chr> <chr> <date> <chr>
## 1 10.6 "" NA Donald Lippi… United Sta… Stockholm, Swed… 1912-07-06 [2]
## 2 10.6 "" NA Jackson Scho… United Sta… Stockholm, Swed… 1920-09-16 [2]
## 3 10.4 "" NA Charley Padd… United Sta… Redlands, USA 1921-04-23 [2]
## 4 10.4 "0.0" NA Eddie Tolan United Sta… Stockholm, Swed… 1929-08-08 [2]
## 5 10.4 "" NA Eddie Tolan United Sta… Copenhagen, Den… 1929-08-25 [2]
## 6 10.3 "" NA Percy Willia… Canada Toronto, Canada 1930-08-09 [2]
## 7 10.3 "0.4" 10.4 Eddie Tolan United Sta… Los Angeles, USA 1932-08-01 [2]
## 8 10.3 "" NA Ralph Metcal… United Sta… Budapest, Hunga… 1933-08-12 [2]
## 9 10.3 "" NA Eulace Peaco… United Sta… Oslo, Norway 1934-08-06 [2]
## 10 10.3 "" NA Chris Berger Netherlands Amsterdam, Neth… 1934-08-26 [2]
## # ℹ 44 more rows
And now for the third table:
iaaf <- m100 %>%
html_element("#mw-content-text > div.mw-parser-output > table:nth-child(23)") %>%
html_table() %>%
clean_names() %>%
mutate(date = mdy(date))
iaaf
## # A tibble: 24 × 9
## time wind auto athlete nationality location_of_race date
## <dbl> <chr> <dbl> <chr> <chr> <chr> <date>
## 1 10.1 1.3 NA Bob Hayes United States Tokyo, Japan 1964-10-15
## 2 10.0 0.8 NA Jim Hines United States Sacramento, USA 1968-06-20
## 3 10.0 2.0 NA Charles Greene United States Mexico City, Mexico 1968-10-13
## 4 9.95 0.3 NA Jim Hines United States Mexico City, Mexico 1968-10-14
## 5 9.93 1.4 NA Calvin Smith United States Colorado Springs, … 1983-07-03
## 6 9.83 1.0 NA Ben Johnson Canada Rome, Italy 1987-08-30
## 7 9.93 1.0 NA Carl Lewis United States Rome, Italy 1987-08-30
## 8 9.93 1.1 NA Carl Lewis United States Zürich, Switzerland 1988-08-17
## 9 9.79 1.1 NA Ben Johnson Canada Seoul, South Korea 1988-09-24
## 10 9.92 1.1 NA Carl Lewis United States Seoul, South Korea 1988-09-24
## # ℹ 14 more rows
## # ℹ 2 more variables: notes_note_2 <chr>, duration_of_record <chr>
How good. Now let’s bind the rows together to make a master data set.
wr100 <- rbind(
pre_iaaf %>% dplyr::select(time, athlete, nationality, date) %>%
mutate(era = "Pre-IAAF"),
iaaf_76 %>% dplyr::select(time, athlete, nationality, date) %>%
mutate(era = "Pre-automatic"),
iaaf %>% dplyr::select(time, athlete, nationality, date) %>%
mutate(era = "Modern")
)
wr100
## # A tibble: 99 × 5
## time athlete nationality date era
## <dbl> <chr> <chr> <date> <chr>
## 1 10.8 Luther Cary United States 1891-07-04 Pre-IAAF
## 2 10.8 Cecil Lee United Kingdom 1892-09-25 Pre-IAAF
## 3 10.8 Étienne De Ré Belgium 1893-08-04 Pre-IAAF
## 4 10.8 L. Atcherley United Kingdom 1895-04-13 Pre-IAAF
## 5 10.8 Harry Beaton United Kingdom 1895-08-28 Pre-IAAF
## 6 10.8 Harald Anderson-Arbin Sweden 1896-08-09 Pre-IAAF
## 7 10.8 Isaac Westergren Sweden 1898-09-11 Pre-IAAF
## 8 10.8 Isaac Westergren Sweden 1899-09-10 Pre-IAAF
## 9 10.8 Frank Jarvis United States 1900-07-14 Pre-IAAF
## 10 10.8 Walter Tewksbury United States 1900-07-14 Pre-IAAF
## # ℹ 89 more rows
Excellent. Let’s plot the results.
ggplot(wr100) +
geom_point(aes(x = date, y = time, col = era), alpha = 0.7) +
labs(
title = "Men's 100m World Record Progression",
subtitle = "Analysing how times have improved over the past 130 years",
caption = "Data: Wikipedia 2025",
x = "",
y = ""
) +
theme_minimal() +
scale_y_continuous(limits = c(9.5, 11), breaks = c(9.5, 10, 10.5, 11)) +
theme(
axis.text.y = element_text(vjust = -0.5, margin = ggplot2::margin(l = 20, r = -20)),
plot.subtitle = element_text(margin = ggplot2::margin(0, 0, 25, 0),size=11),
legend.title = element_blank(),
plot.title = element_text(face = "bold", size = 12),
plot.caption = element_text(size = 8),
axis.text = element_text(size = 8),
panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank(),
axis.line.x = element_line(colour = "black", size = 0.4),
axis.ticks.x = element_line(colour = "black", size = 0.4)
)